CO-ORDINATE GEOMETRY

^ INTRODUCTION

In the previous class, you have learnt to locate the position of a point in a coordinate plane of two dimensions, in terms of two coordinates. You have learnt that a linear equation in two variables, of the form $\mathrm{ax}+\mathrm{c}=0$ (either a $\neq 0$ or $\mathrm{b} \neq 0$) can be represented graphically as a straight line in the coordinate plane of x and y coordinates. In chapter 4, you have learnt that graph of a equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, \mathrm{a} \neq 0$ is an upward parabola if $\mathrm{a}>0$ and a downward parabola if a <0.
In this chapter, you will learn to find the distance between two given points in terms of their coordinates and also, the coordinates of the point which divides the line segment joining the two given points internally in the given ratio.

HISTORICAL FACTS

Rene Descartes (1596 - 1650), The $17^{\text {th }}$ century FrenchMathematician, was a thinker and a philosopher. He is called the father of Co-ordinate Geometry because he unified Algebra and Geometry which were earlier two distinct branches of Mathematics. Descartes explained that two numbers called coordinates are used to locate the position of a point in a plane.
He was the first Mathematician who unified Algebra and Geometry, so Analytical Geometry is also called Algebraic Geometry. Cartesian plane and Cartesian Product of sets have been named after the great Mathematician.

RECALL

Cartesian Co-ordinate system:

Let $\mathrm{X}^{\prime} \mathrm{OX}$ and Y'OY be two perpendicular straight lines intersecting each other at the point O . Then :

1. X'OX is called the x -axis or the axis of x .
2. Y'OY is called the y-axis or the axis of y.
3. The x-co-ordinate along OX is positive and along OX' negative, y-co-ordinate along OY (upward) is positive and along OY' (downward) is negative.
4. Both X'OX and Y'OY taken together in this order are called the rectangular axes because the angle between them is a right angle.
5. O is called the origin i.e., it is point of intersection of the axes of co-ordinates.

Co-ordinates of a point :

\% KUMMAR
6. Abscissa of a point in the plane is its perpendicular distance with proper sign from y-axis.
7. Ordinate of a point in the plane is its perpendicular distance with proper sign from y-axis.
8. The y-co-ordinate any point on x-axis is zero.
9. The x -co-ordinate any point on x -axis is zero.
10. Any point in the xy-plane, whose y-co-ordinate is zero, lies on x-axis.
11. Any point in the xy-plane, whose x-co-ordinate is zero, lies on x-axis.
12. The origin has coordinates $(0,0)$.
13. The ordinates of all points on a horizontal line which is parallel to x -axis are equal i.e. $\mathrm{y}=\mathrm{constant}=2$.

14. The abscissa of all points on a vertical line which is a line parallel to y-axis are equal i.e. x-constant $=4$

Four Quadrants of a Coordinate plane :

The rectangular axes X'OX and Y'OY divide the plane into four quadrants as below :

15. Any point in the I quadrant has (+ ve abscissa, + ve ordinate).
16. Any point in the II quadrant has (- ve abscissa, + ve ordinate).
17. Any point in the III quadrant has (- ve abscissa, - ve ordinate).
18. Any point in the IV quadrant has (+ ve abscissa, - ve ordinate).

^ DISTANCE FORMULA

The distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in a rectangular coordinate system is equal to $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Proof : X, OX and Y ' OY are the rectangular coordinate axes. $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are the given points. We draw PA and QB perpendiculars on the x -axis : PC and QD perpendicular on the y -axis,

Now, CP (produced) meets BQ in R and $\mathrm{PR} \perp \mathrm{BQ}$.
We find
$\mathrm{PR}=\mathrm{AB}=\mathrm{OB}-\mathrm{OA}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$
and
$\mathrm{QR}=\mathrm{BQ}-\mathrm{BR}=\mathrm{BQ}-\mathrm{AP}=\mathrm{CD}-\mathrm{OC}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$
In right $\triangle \mathrm{PRQ}$, using Pythagoras theorem, we have
$P Q^{2}=P R^{2}+Q R^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{1}-y_{2}\right)^{2} \Rightarrow P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
We have taken the positive square roof value because distance between two points is a non-negative quantity.

Distance of a Point from Origin :

The distance of a point (\mathbf{x}, y) form origin is $\sqrt{x^{2}+y^{2}}$.
Proof: Let us take a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ in the given plane of axes $\mathrm{X}^{\prime} \mathrm{OX}$ and Y' OY as shown in the fig. Here, the point P (x, y) is in the first quadrant but it can be taken anywhere in all the four quadrants. We have to find the distance OP, i.e., the distance of the point P from the origin O .

Form the point P , draw $\mathrm{PM} \perp \mathrm{OX}$ and $\mathrm{PL} \perp \mathrm{OY}$. Then we have
OM = x
$\mathrm{MP}=\mathrm{OL}=\mathrm{y}$
$\mathrm{OP}^{2}=\mathrm{OM}^{2}+\mathrm{MO}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2}$

Therefore, $\mathrm{OP}=\sqrt{x^{2}+y^{2}}$

Test For Geometrical Figures :

(a) For an isosceles
(b) For an equilateral triangle
(c) For a right-angled triangle
(d) For a square
(e) For a rhombus
(f) For a rectangle
(g) For a parallelogram
: \quad Prove that two sides are equal.
: Prove that three sides are equal.
: \quad Prove that the sum of the squares of two sides is equal to the square of the third side.
: \quad Prove that all sides are equal and diagonals are equal.
: Prove that all sides are equal and diagonals are not equal.
: \quad Prove that the opposites sides are equal and diagonals are also equal.
: \quad Prove that the opposite sides are equal in length and diagonals are not equal

Ex. 1 Find the distance between the following pairs of points:
(a) $(2,3),(4,1)(b)(-5,7),(-1,3)$
(c) (a,b), (-1, - b)
[NCERT]
Sol. (a) The given points are : A $(2,3), \mathrm{B}(4,1)$.

$$
\begin{aligned}
& \text { Required distance }=A B=B A=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& A B=\sqrt{(4-2)^{2}+(1-3)^{2}}=\sqrt{(2)^{2}+(-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2} \text { units }
\end{aligned}
$$

(b) Distance between $\mathrm{P}(-5,7)$ and $\mathrm{Q}(-1,3)$ is given by

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{QP}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-1+5)^{2}+(3-7)^{2}=\sqrt{16+6}}=\sqrt{32}
\end{aligned}
$$

Required distance $=\mathrm{PQ}=\mathrm{QP}=4 \sqrt{2}$ units
(c) Distance LM between $\mathrm{L}(\mathrm{a}, \mathrm{b})$ and $\mathrm{M}(-\mathrm{a},-\mathrm{b})$ is given by

$$
\begin{aligned}
\mathrm{LM} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-a-a)^{2}+(-b-b)^{2}}=\sqrt{(-2 a)^{2}+(-2 b)^{2}}=\sqrt{4 a^{2}=4 b^{2}} \quad \stackrel{L(a, b) M(-a,-b)}{\bullet} \\
& =\sqrt{4\left(a^{2}+b^{2}\right.}=2 \sqrt{a^{2}+b^{2}} \text { units }
\end{aligned}
$$

Ex. 2 Find the points on x-axis which are at a distance of 5 units from the point $A(-1,4)$.
Sol. Let the point on x -axis be : $\mathrm{P}(\mathrm{x}, 0)$.
Distance $=P A=5$ units $\quad \Rightarrow \quad P A^{2}=25$

$$
\begin{array}{llll}
\Rightarrow & (x+1)^{2}+(0-4)^{2}=25 & \Rightarrow & x^{2}+2 x+1+16=25 \\
\Rightarrow & x^{2}+2 x+17=25 & \Rightarrow & x^{2}+2 x-8=0
\end{array}
$$

Required point on x-axis are $(2,0)$ and $(-4,0)$
Verification: $\quad \mathrm{PA}=\sqrt{(2+1)^{2}+(0-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5$

$$
\mathrm{PA}=\sqrt{(-4+1)^{2}+(0-4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
$$

Ex. 3 What point on y-axis is equidistant from the points $(3,1)$ and $(1,5)$
Sol. Since the required point P (say) is on the y -axis, its abscissa (x-co-ordinate) will be zero. Let the ordinate (y-coordinate) of the point be y.

Therefore co-ordinates of the point P are : $(0, \mathrm{y})$
i.e., $P(0, y)$

Let A and B denote the points $(3,1)$ and $(1,5)$ respectively. PA = PB ...(given)

Squaring we get :

$$
\mathrm{PA}^{2}=\mathrm{PB}^{2}
$$

$\Rightarrow \quad(0-3)^{2}+(y-1)^{2}=(0-1)^{2}+(y-5)^{2}$
$\Rightarrow \quad 9+y^{2} 1-2 y=1+y^{2}+25-10 y$

$\Rightarrow \quad y^{2}-2 y+10-y^{2}-10 y+26 \Rightarrow-2 y+10 y=26-10 \Rightarrow 8 y=16 \Rightarrow y=2$
The required point on y -axis equidistant from $\mathrm{A}(3,1)$ and $\mathrm{B}(1,5)$ is $\mathrm{P}(0,2)$.
Ex. 4 If $\mathrm{Q}(2,1)$ and $R(-3,2)$ and $P(x, y)$ lies on the right bisector of $Q R$ then show that $5 x-y+$
Sol Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be a point on the right bisector of QR :
$\mathrm{Q}(2,1)$ and $\mathrm{R}(-3,2)$ are equidistant from $\mathrm{P}(\mathrm{x}, \mathrm{y})$, then we must have :

$$
\begin{array}{ll}
& \mathrm{PQ}=\mathrm{PR} \\
\Rightarrow & P Q^{2}=P R^{2} \\
\Rightarrow & (x-2)^{2}+(y-1)^{2}=(x+3)^{2}+(y-2)^{2} \\
\Rightarrow & \left(x^{2}-4 x+4\right)+\left(y^{2}-2 y+1\right)=\left(x^{2}+6 x+9\right)+\left(y^{2}-4 x+4\right) \\
\Rightarrow & -4 x-2 y+5=6 x-4 y+13 \\
\Rightarrow & 10 x-2 y-8=0 \\
\Rightarrow & 2(5 x-y+4)=0 \\
\Rightarrow & 5 x-y+4=0
\end{array}
$$

Ex. 5 The vertices of a triangle are $(-2,0),(2,3)$ and $(1,-3)$.
Is the triangle equilateral : isosceles or scalene?

Sol. We denote the given point $(-2,0),(2,3)$ and $(1,-3)$ by

> A, B and C respectively then :

$$
A(-2,0), B(2,3), C(1,-3)
$$

$$
A B=\sqrt{(2+2)^{2}+(3-0)^{2}}=\sqrt{(4)^{2}+(3)^{2}}=5
$$

$$
B A=\sqrt{(1-2)^{2}+(-3-3)^{2}}=\sqrt{(-1)^{2}+(-6)^{2}}=\sqrt{37}
$$

$B C=\sqrt{(-2-1)^{2}+(0+3)^{2}}=\sqrt{(-3)^{2}+(3)^{2}}=3 \sqrt{2}$
Thus we have $A B \neq B C \neq C A$
$\Rightarrow \quad A B C$ is a scalene triangle
Ex. 6 Name the quadrilateral formed, if any, by the following points, and give reasons for your answer.
$(-1,-2),(1,0),(-1,2),(-3,0)$
[NCERT]

Sol. $\quad \mathrm{A}(-1,-2), B(1,0) C(-1,2), D(-3,0)$
Determine distances : $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AC}$ and BD .
$\mathrm{AB}=\sqrt{(1+1)^{2}+(0+2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-1-1)^{2}+(2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{CD}=\sqrt{(-3+1)^{2}+(0-2)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{DA}=\sqrt{(-1+3)^{2}+(-2-0)^{2}}=\sqrt{4+4}=\sqrt{8}=2 \sqrt{2}$
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
The sides of the quadrilateral are equal
$\mathrm{AC}=\sqrt{(-1+1)^{2}+(2+2)^{2}}=\sqrt{0+16}=4$
Diagonal AC = Diagonal BD.
$\left.\mathrm{BD}=\sqrt{(-3+1)^{2}+(0-0)^{2}}=\sqrt{16+0}=4\right\}$

From (1) and (2) we conclude that ABCD is a square.

COLLINEARITY OF THREE POINTS

Let A, B and C three given points. Point A, B and C will be collinear, If the sum of lengths of any two line-
segments is equal to the length of the third line-segment.
In the adjoining fig. there are three point A, B and C.
Three point A, B and C are collinear if and only if
(i) $\mathrm{AB}+\mathrm{BC}=\mathrm{AC}$

or (ii) $\mathrm{AB}+\mathrm{AC}=\mathrm{BC}$
or (iii) $\quad \mathrm{AC}+\mathrm{BC}=\mathrm{AB}$
Ex. 7 Determine whether the points $(1,5)(2,3)$ and $(-2,-11)$ are collinear.
[NCERT]
Sol. The given points are : $\mathrm{A}(1,5), \mathrm{B}(2,3)$ and $\mathrm{C}(-2,-11)$.
Let us calculate the distance : AB, BC and CA by using distance formula.
$\mathrm{AB}=\sqrt{(2-1)^{2}+(3-5)^{2}}=\sqrt{(1)^{2}+(-2)^{2}}=\sqrt{1+4}=\sqrt{5}$

$$
\begin{aligned}
& \mathrm{BC}=\sqrt{(-2-2)^{2}+(-11-3)^{2}}=\sqrt{(-4)^{2}+(-14)^{2}}=\sqrt{16+196}=\sqrt{212}=2 \sqrt{53} \\
& \mathrm{CA}=\sqrt{(-2-1)^{2}+(-11-5)^{2}}=\sqrt{(-3)^{2}+(-16)^{2}}=\sqrt{9+296}=\sqrt{265}
\end{aligned}
$$

From the above we see that : $\mathrm{AB}+\mathrm{BC} \neq \mathrm{CA}$
Hence the above stated points $A(1,5) B(2,3)$ and $C(-2,-11)$ are not collinear.

* SECTION FORMULA

Coordinates of the point, dividing the line-segment joining the points (x_{1}, y_{1}) and (x_{2}, y_{2}) internally in the ratio $\boldsymbol{m}_{1}: \boldsymbol{m}_{2}$ are given by $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

Proof. Let $P(x, y)$ be the point dividing the line-segment joining $A\left(x_{1}, y_{1}\right)$ internally in the ratio $m_{1}: m_{2}$. We draw the perpendiculars $A L, B M$ and $P Q$ on the x-axis from the points A, B and P respectively. L, M and Q are the points on the x-axis where three perpendiculars meet the x-axis.

We draw $\mathrm{AC} \perp \mathrm{PQ}$ and $\mathrm{PD} \perp \mathrm{BM}$. Here $\mathrm{AC} \| \mathrm{x}$-axis and $\mathrm{PD} \| \mathrm{x}$-axis.

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{AC} \| \mathrm{PD} \quad(\because \mathrm{AC} \text { and } \mathrm{PD} \text { both } \| \mathrm{x} \text {-axis }) \\
& \Rightarrow \quad \angle \mathrm{PAC}=\angle \mathrm{BPD}
\end{aligned}
$$

Thus, in $\triangle \mathrm{ACP}$ and $\triangle \mathrm{PDB}$, we have

$$
\text { and } \quad \begin{aligned}
& \angle \mathrm{PAC}=\angle \mathrm{BPD} \\
& \angle \mathrm{ACP}=\angle \mathrm{PDB}=90^{\circ}
\end{aligned}
$$

Then by AA similarity criterion,
$\Delta \mathrm{ACP} \sim \Delta \mathrm{PDB}$
$\Rightarrow \quad \frac{A C}{P D}=\frac{P C}{B D}=\frac{A P}{P B}=\frac{m_{1}}{m_{2}}$

$\Rightarrow \quad \frac{A C}{P D}=\frac{m_{1}}{m_{2}} \ldots \ldots$. (1) and
$\frac{P C}{B D}=\frac{m_{1}}{m_{2}}$
$\mathrm{AC}=\mathrm{LQ}=\mathrm{OQ}-\mathrm{OL}=\left(\mathrm{x}-\mathrm{x}_{1}\right)$
$\mathrm{PD}=\mathrm{QM}=\mathrm{OM}-\mathrm{OQ}=\left(\mathrm{x}_{2}-\mathrm{x}\right)$
Putting in (1), we get

$$
\begin{array}{rll}
& \frac{\left(x-x_{1}\right)}{\left(x_{2}-x\right)}=\frac{m_{1}}{m_{2}} & \Rightarrow
\end{array} m_{2} x-m_{2} x_{1}=m_{1} x_{2}-m_{1} x ~ 子 ~\left(m_{1}+m_{2}\right) x=m_{1} x_{2}-m_{1} x_{1}
$$

Now, $\quad \mathrm{PC}=\mathrm{PQ}-\mathrm{CQ}=\mathrm{PQ}-\mathrm{AL}=\left(\mathrm{y}-\mathrm{y}_{1}\right)$

$$
\mathrm{BD}=\mathrm{BM}-\mathrm{DM}=\mathrm{BM}-\mathrm{PQ}=\left(\mathrm{y}_{2}-\mathrm{y}\right)
$$

Putting in (2), we get

$$
\frac{y-y_{1}}{y_{2}-y}=\frac{m_{1}}{m_{2}} \Rightarrow y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
$$

Therefore, the coordinates of the point P are $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
Remark : To remember the section formula, the diagram given below is helpful:

Point Dividing a Line Segment in the Ratio k: 1 :
If $\mathrm{P}\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$ divides the line-segment, joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ internally in the ratio $\mathrm{m}_{1}: \mathrm{m}_{2}$ we can express it as below :
$\mathrm{P}\left(\frac{\frac{m_{1}}{m_{2}} x_{2}}{\frac{m_{1}}{m_{2}}+1}, \frac{\frac{m_{1}}{m_{2}} y_{2}+y_{1}}{\frac{m_{1}}{m_{2}}+1}\right)$ (By dividing the numerator and the denominator by m_{2})
Putting $\frac{m_{1}}{m_{2}}=\mathrm{k}$, the ratio becomes $\mathrm{k}: 1$ and the coordinates of P are expressed in the form
$\mathrm{P}\left(\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2} y_{1}}{k+1}\right)$
Therefore, the coordinates of the point P , which divides the line-segment joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ internally in the ratio $\mathrm{k}: 1$, are given by $\left(\frac{k x_{2}+x 1}{k+1}, \frac{k y_{2}+y 1}{k+1}\right)$

Mid-point Formula :

Coordinates of the mid-point of the line-segment joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
The mid-point $\mathrm{M}(\mathrm{x}, \mathrm{y})$ of the line-segment joining $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ divides the line-segment AB in the ratio 1:1. Putting $\mathrm{m}_{1}-\mathrm{m}_{2}=1$ in the section formula, we get the coordinates of the mid-point as $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Collinearity of three points :

Three given points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are said to be collinear if one of them must divide the line segment joining the other two points in the same ratio.

Remark : Three points are called non-collinear if one of them divides the line segment joining the other two points in different ratios.

COMPETITION WINDOW

SECTION FORMULA FOR EXTERNAL DIVISION

The co-ordinates of line point which divides the line segment joining the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) externally in the ratio $\mathrm{m}: \mathrm{n}$ are $\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}\right)$
e.g., In the following case, C divides AB externally in ratio $\mathrm{AC}: \mathrm{BC}$

Let $\mathrm{A}=(1,0), \mathrm{B}=(4,0)$ and $5: 2$ be the ratio in which C divides AB externally. Then co-ordinates of C are :

$$
\left(\frac{5 \times 4-2 \times 1}{5-2}, \frac{5 \times 0-2 \times 0}{5-2}\right)=[6,0]
$$

Ex. 8 Find the co-ordinates of the point which divides the join of $(-1,7)$ and $(4,-3)$ in the ratio $2: 3$, [NCERT]
Sol. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ divides the line segment AB joining $\mathrm{A}(-1,7)$ and $\mathrm{B}(4,-3)$ in the ratio $2: 3$. Ten by using section formula line the co-ordinates of P are given by :

$\left(\frac{2 \times 4 \times 3 \times(-1)}{2+3}, \frac{2 \times(-3)+3 \times 7}{2+3}\right)=P\left(\frac{8-3}{5}, \frac{-6+21}{5}\right)=P\left(\frac{5}{5}, \frac{15}{5}\right)=\mathrm{P}(1,3)$
Hence the required point of division which divides the line segment joining $\mathrm{A}(-1,7)$ and $(4,-3)$ in the ratio $2: 3$ is $P(1,3)$.

Sol.
$(-2,2)$
It is given that AB is divided into four equal parts : $\mathrm{AP}=\mathrm{PQ}=\mathrm{QR}=\mathrm{RB}$
Q is the mid-point of AB , then co-ordinates of Q are : $\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)=\left(\frac{0}{2}, \frac{10}{2}\right)=(0,5)$
P is the mid-point of AQ, then co-ordinates of P are : $\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)=\left(\frac{-2}{2}, \frac{7}{2}\right)=\left(-1, \frac{7}{2}\right)$
Also, R is the mid-point of QB , then co-ordinates of R are : $\left(\frac{0+2}{2}, \frac{5+8}{2}\right)=\left(\frac{2}{2}, \frac{13}{2}\right)=\left(-1, \frac{13}{2}\right)$
Hence, required co-ordinates of the points are :

$$
P\left(-1 \frac{7}{2}\right), Q(0,5), R\left(1, \frac{13}{2}\right)
$$

Ex. 10 If the point $C(-1,2)$ divides the lines segment $A B$ in the ratio $3: 4$, where the co-ordinates of A are $(2,5)$, find the coordinates of B.
Sol. Let $C(-1,2)$ divides the line joining $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$. Then.

$$
\begin{aligned}
& C\left(\frac{3 x+8}{7}, \frac{3 y+20}{7}\right)=C(-1,2) \\
& \Rightarrow \quad \frac{3 x+8}{7}=-1 \quad \& \quad \frac{3 y+20}{7}=2 \\
& \Rightarrow \quad 3 x+8=-7 \quad \& \quad 3 y+20=14 \\
& \Rightarrow \quad x=-5 \quad \& \quad y=-2
\end{aligned}
$$

The coordinates of B are : B $(-5,-2)$
Ex. 11 Find the ratio in which the line segment joining the points $(1,-7)$ and $(6,4)$ is divided by x -axis
Sol. Let C $(\mathrm{x}, 0)$ divides AB in the ratio $\mathrm{k}: 1$.
By section formula, the coordinates of C are given by :

$$
\begin{aligned}
& C\left(\frac{6 k+1}{k+1}, \frac{4 k-7}{k+1}\right) \quad \Rightarrow \quad \frac{4 k-7}{k+1}=0 \\
\Rightarrow & 4 k-7=0 \Rightarrow k=\frac{7}{4}
\end{aligned}
$$

i,e., the x-axis divides $A B$ in the ratio $7: 4$.
Ex. 12 Find the value of m for which coordinates (3,5), $(m, 6)$ and $\left(\frac{1}{2}, \frac{15}{2}\right)$ are collinear.
Sol. Let $\mathrm{P}(\mathrm{m}, 6)$ divides the line segment AB joining $\mathrm{A}(3,5) \mathrm{B}\left(\frac{1}{2}, \frac{15}{2}\right)$ in the ratio $\mathrm{k}: 1$.

Applying section formula, we get the co-ordinates of P :

$$
\left(\frac{\frac{1}{2} k+3 \times 1}{k+1}, \frac{\frac{15}{2} k+5 \times 1}{k+1}\right)=\left(\frac{k+6}{2(k+1)}, \frac{15 k+10}{2(k+1)}\right)
$$

But $\mathrm{P}(\mathrm{m}, 6)=\mathrm{P}\left(\frac{k+6}{2(k+1)}, \frac{15 k+10}{2(k+1)}\right) \Rightarrow m=\frac{k+6}{2(k+)}$ and also $\frac{15 k+10}{2(k+1)}=6$
$\Rightarrow \quad \frac{15 k+10}{2(k+1)}=6 \quad \Rightarrow \quad 15 k+10=12(k+1)$
$\Rightarrow \quad 15 k+10=12 k+12 \quad \Rightarrow \quad 15 k-12 k=12-10$
$\Rightarrow \quad 3 \mathrm{k}=2 \quad \Rightarrow \quad k=\frac{2}{3}$
Putting $k=\frac{2}{3}$ in the equation $m=\frac{k+6}{2(k+)}$ we get :
$m=\frac{\left(\frac{2}{3}+6\right)}{2\left(\frac{2}{3}+1\right)}=\frac{\left(\frac{2+18}{3}\right)}{2\left(\frac{2+3}{3}\right)}=\frac{20}{3} \times \frac{3}{10}=\frac{20}{10} \quad\left(\because k=\frac{2}{3}\right)$
$m=\frac{10 \times 2}{10}=2$
Required value of m is $2 \Rightarrow \mathrm{~m}=2$

Ex. 13 The two opposite vertices of a square are ($-1,2$) and (3,2). Find the co-ordinates of the other two vertices.
Sol. Let $A B C D$ be a square and two opposite vertices of it are $A(-1,2)$ and $C(3,2) A B C D$ is a square.

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AB}=\mathrm{BC} \quad \Rightarrow \quad \mathrm{AB}^{2}=\mathrm{BC}^{2} \\
\Rightarrow & (x+1)^{2}+(y-2)^{2}=(x-3)^{2}+(y-2)^{2} \\
\Rightarrow & x^{2}+2 x+1=x^{2}-6 x+9 \quad \Rightarrow \quad 2 x+6 x=9-1=8 \\
\Rightarrow & 8 x=8 \Rightarrow x=1
\end{array}
$$

ABCD is right Δ at B , then

$$
\begin{array}{lc}
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \text { (Pythagoras theorem) } \\
\Rightarrow & (3+1)^{2}+(2-2)^{2}=(x+)^{2}+(y-2)^{2}+(x-3)^{2}=(y-2)^{2} \\
\Rightarrow & 16=2(y-2)^{2}+(1+1)^{2}+(1-3)^{2} \\
\Rightarrow & 16=2(y-2)^{2}+4+4 \Rightarrow 2(y-2)^{2}=16-8=8 \\
\Rightarrow & (y-2)^{2}=4 \Rightarrow y-2= \pm 2 \Rightarrow \quad y=4 \text { and } 0
\end{array}
$$

i.e., when $\mathrm{x}=1$ then $\mathrm{y}=4$ and 0

Co-ordinates of the opposite vertices are : $\mathrm{B}(1,0)$ or $\mathrm{D}(1,4)$

AREA OF A TRIANGLE

In your pervious classes, you have learnt to find the area of a triangle in terms of its base and corresponding altitude as below :
Area of triangle $=\frac{1}{2} \times$ base \times altitude .
In case, we know the lengths of the three sides of a triangle, then the area of the triangle can be obtained by using the Heron's formula.
In this section, we will find the area of a triangle when the coordinates of its three vertices are given. The lengths of the three sides can be obtained by using distance formula but we will not prefer the use of Heron's formula.
Some times, the lengths of the sides are obtained as irrational numbers and the application of Heron's formula becomes tedious. Let us develop some easier way to find the area of a triangle when
 the coordinates of its vertices are given.
Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ be the given three points. Through A draw $\mathrm{AQ} \perp \mathrm{OX}$, through B draw $\mathrm{BP} \perp \mathrm{OX}$ and through C draw $\mathrm{CR} \perp \mathrm{OX}$.
Form the fig. $\mathrm{AQ}=\mathrm{y}_{1}, \mathrm{BP}=\mathrm{y}_{2}$ and $\mathrm{CR}=\mathrm{y}_{3}, \mathrm{OP}=\mathrm{x}_{2}, \mathrm{OQ}=\mathrm{x}_{1}$ and $\mathrm{OR}=\mathrm{x}_{3}$
$\Rightarrow \quad P Q=x_{1}-x_{2} ; Q R=x_{3}-x_{1}$ and $P R=x_{3}-x_{2}$
Area of trapezium $=\frac{1}{2}$ (sum of parallel side) \times distance between parallel lines
ar. $(\Delta \mathrm{ABC})=\operatorname{ar} .($ Trap $\cdot \mathrm{ABCD})+\operatorname{ar} .($ Trap.AQRC $)-\operatorname{ar} .($ Trap. BPRC $)$
$=\frac{1}{2}(B P+A Q) \times P Q+\frac{1}{2}(A Q+C R) \times Q R-\frac{1}{2}(P B+C R) \times P R$
$=\frac{1}{2}\left(y_{2}+y_{1}\right)\left(x_{1}-x_{2}\right)+\frac{1}{2}\left(y_{2}+y_{3}\right)\left(x_{3}-x_{1}\right)-\frac{1}{2}\left(y_{2}+y_{3}\right)\left(x_{3}-x_{2}\right)$
$=\frac{1}{2}\left|\mathrm{x}_{1}\left(\mathrm{y}_{2}+\mathrm{y}_{1}-\mathrm{y}_{1}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{2}+\mathrm{y}_{3}-\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}+\mathrm{y}_{3}-\mathrm{y}_{2}-\mathrm{y}_{3}\right)\right|$
$=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

Area of $\Delta \mathrm{ABC}=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

Condition of collinearity of three points :

The given points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ will be collinear if the area of the triangle formed by them must be zero because triangle can not be formed.
$\Rightarrow \quad$ area of $\triangle \mathrm{ABC}=0$
$\Rightarrow \quad \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=0$
$\Rightarrow \quad x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0$
is the required condition for three points to be collinear.
Ex. 14 The co-ordinates of the $\triangle \mathrm{ABC}$ are $\mathrm{A}(4,1), \mathrm{D}(3,2)$ and $\mathrm{C}(0, \mathrm{~K})$. Given that the area of $\Delta \mathrm{ABC}$ is 12 unit ${ }^{2}$. Find the value of k.

Sol. Area of $\Delta \mathrm{ABC}$ formed by the given-points $\mathrm{A}(4,1), \mathrm{B}(-3,2)$ and $\mathrm{C}(0, \mathrm{k})$ is
$=\frac{1}{2}|4(2-k)+(-3)(k-1)+0(1-2)|=\frac{1}{2}|18-4 k-3 k+3|=\frac{1}{2}(11-7 k)$
But area of $\Delta \mathrm{ABC}=12$ unit 2 \qquad (given)

$$
\begin{array}{lll}
& \frac{1}{2}\left|=\frac{1}{2}(11-7 k)\right|=24 & \Rightarrow
\end{array}|(11-7 k)|=24 .
$$

Ex. 15 Find the area of the quadrilateral whose vertices taken in order are ($-4,-2$), ($-3,-5$), (3, -2), and (2, 3).
[NCERT]
Sol. Join A and C
The given points are $\mathrm{A}(-4,-2), \mathrm{B}(-4,-2), \mathrm{C}(-4,-2)$ and $\mathrm{D}(2,3)$
Area of $\triangle \mathrm{ABC}$
$=\frac{1}{2}|(-4)(-5+2)-3(-2+2)+3(-2+5)|$
$=\frac{1}{2}|20-8-6+15| \quad=\frac{21}{2}-10.5$ sq. units
Area of $\triangle \mathrm{ACD}$
$=\frac{1}{2}|(-4)(-2-3)+3(-2+2)+3(-2+5)|$

$=\frac{1}{2}|20+15|=\frac{35}{2}=17.5$ sq. units
Area of quadrilateral $\mathrm{ABCD}=$ ar. $(\Delta \mathrm{ABC})+\operatorname{ar} .(\Delta \mathrm{ACD})=(10.5+17.5)$ sq. units $=28$ sq. units

Ex. 16 Find the value of p for which the points ($-1,3$), (2, p), (5, -1) are collinear.
Sol. The given points $\mathrm{A}(1,3), \mathrm{B}(2, \mathrm{p}), \mathrm{C}(5,-1)$ are collinear.
$\Rightarrow \quad$ Area of $\triangle \mathrm{ABC}$ formed by these points should be zero.
$\Rightarrow \quad$ The area of $\triangle \mathrm{ABC}=0$
$\Rightarrow \quad \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=0$
$\Rightarrow \quad-1(p+1)+2(-1-3)+5(3-p)=0$
$\Rightarrow \quad-p-1-8+15-5 p=0$
$\Rightarrow \quad-6 p+15-9=0 \Rightarrow 6 p=-6 \Rightarrow p=1$
Hence the value of p is 1 .

COMPETITION WINDOW

AREA OF A QUADRILATERAL

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ are vertices of a quadrilateral, its area

$$
\frac{1}{2}\left|\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\left(x_{3} y_{4}-x_{4} y_{3}\right)+\left(x_{4} y_{1}-x_{1} y_{4}\right)\right|
$$

AREA OF A POLYEON

If $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \ldots \ldots\left(x_{n}, y_{n}\right)$ are vertices of a polygon of n sides, its area

$$
\frac{1}{2}\left|\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\left(x_{3} y_{4}-x_{4} y_{3}\right)+\ldots .+\left(x_{n} y_{1}-x_{1} y_{n}\right)\right|
$$

Remark: (i) If the area of a quadrilateral joining the four points is zero, the four points are collinear.
(ii) If two opposite vertex of a square are $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{C}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ then it's area is

$$
\frac{1}{2}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]
$$

TRY OUT THE FOLLOWING

(i) Find the area of the quadrilateral formed by joining the four points (1, 1), (3, 4), (5, -2) \& (4, -7).
(ii) Find the area of the pentagon whose vertices are $\mathrm{A}(1,1), \mathrm{B}(7,21), \mathrm{C}(7,-3) \mathrm{D}(4,-7)$ and $\mathrm{E}(0,-3)$.
(iii) If the Co-ordinates of two opposite vertex of a square are (a, b) and (b, a), find the area of the square.

ANSWERS
(i) $\frac{41}{2}$ sq. nuits
(ii) $\frac{137}{2}$ sq. nuits
(i) $(a-b)^{2}$ sq. nuits

SYNOPSIS

- Distance Formula : The distance between two points (x_{1}, y_{2}) and (x_{2}, y_{2}) in a rectangular coordinate system is equal to $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. The distance of a point (x, y) from origin is $\sqrt{x^{2}+y^{2}}$

Test For Geometrical Figures :

(a) For an isosceles triangle
: \quad Prove that at least two sides are equal
(b) For an equilateral triangle
: Prove that three sides are equal
(c) For a right-angled triangle

Prove that the sum of the squares of two sides is equal to the square of the third side.
(d) For a square

Prove that all sides are equal and diagonals are equal.
(e) For a rhombus

Prove that all sides are equal and diagonals are equal.
(f) For a rectangle
: Prove that the opposite sides are equal and diagonals are also equal.
(g) For a parallelogram : Prove that the opposite sides are equal in length and diagonals are not equal.

* Collinearity of three points : Let A, B and C there given points. Point A, B and C will be collinear if the sum, of lengths of any two line-segment is equal to the length of the third line-segment. In the adjoining fig. there are three point A, B and C . Three points A, B and C are collinear if and only if
(i) $A B+B C=A C$
or (ii) $\mathrm{AB}+\mathrm{AC}=\mathrm{BC}$ or
(iii) $\mathrm{AC}+\mathrm{BC}=\mathrm{AB}$
* Section Formula : Coordinates of the point, dividing the line-segment joining the points (x_{1}, y_{1}) and (x_{2}, y_{2}) internally in the ratio: $\mathbf{m}_{1} \mathbf{m}_{2}$ are given by $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$

Mid-point Formula : Coordinates of the mid-point of the line-segment joining ($\mathbf{x}_{1}, \mathbf{y}_{1}$) and $\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)$ are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
" Area of triangle : Area of $\triangle A B C=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+y_{3}\left(y_{1}-y_{2}\right)\right|$

Condition of collinearity of three points : The given points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ will be collinear if the area of the triangle formed by them must be zero because triangle can not be formed.

$$
\begin{aligned}
& \Rightarrow \quad \text { area of } \triangle A B C=0 \\
& \Rightarrow \quad \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+y_{3}\left(y_{1}-y_{2}\right)\right|=0 \Rightarrow x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0
\end{aligned}
$$

is the required condition for three points to be collinear.

OBJECTIVE TYPE QUESTIONS

Choose The Correct Option in Each of The Following

1. The distance between the points (a, b) and $(-\mathrm{a},-\mathrm{b})$ is :
(A) $a^{2}+b^{2}$
(B) $\sqrt{a^{2}+b^{2}}$
(C) 0
(D) $2 \sqrt{a^{2}+b^{2}}$
2. The distance between points $(a+b, b+c)$ and $(a-b, c-b)$ is :
(A) $2 \sqrt{a^{2}+b^{2}}$
(B) $2 \sqrt{a^{2}+c^{2}}$
(C) $2 . \sqrt{2 b}$
(D) $\sqrt{a^{2}-c^{2}}$
3. The distance between points $A(1,3)$ and $B(x, 7)$ is 5 . The value of $x>0$ is :
(A) 4
(B) 2
(C) 1
(D) 3 .
4. The distance between the points $\left(\mathrm{a} \cos 20^{\circ}+\mathrm{b} \sin 20^{\circ}, 0\right)$ and $\left(\mathrm{a} \sin 20^{\circ}-\mathrm{b} \cos 20^{\circ}\right)$ is :
(A) $(a+b)$
(B) $(a-b)$
(C) $\sqrt{a^{2}-b^{2}}$
(D) $\sqrt{a^{2}+b^{2}}$
5. Mid-point of the line-segment joining the points $(-5,4)$ and $(9,-8)$ is :
(A) $(-7,6)$
(B) $(2,-2)$
(C) $(7,-6)$
(D) $(-2,2)$.
6. The co-ordinates of the points which divides the join of $(-2,2)$ and $(-5,7)$ in the ratio $2: 1$ is :
(A) $(4,-4)$
(B) $(-3,1)$
(C) $(-4,4)$
(D) $(1,-3)$.
7. The co-ordinates of the points on x-axis which is equidistant from the points $(5,4)$ and $(-2,3)$ are :
(A) $(2,0)$
(B) $(3,0)$
(C) $(0,2)$
(D) $(0,3)$.
8. The co-ordinates of the points on y-axis which is equidistant from the points $(3,1)$ and $(1,5)$ are :
(A) $(0,4)$
(B) $(0,2)$
(C) $(4,0)$
(D) $(2,0)$.
9. The coordinates of the centre of a circle are $(-6,1.5)$. If the ends of a diameter are $(-3, y)$ and $(x,-2)$ then:
(A) $x=-9, y=5$
(B) $x=5, y=-9$
(C) $x=9, y=5$
(D) None of these
10. The points $(-2,2),(8,-2)$ and $(-4,-3)$ are the vertices of a :
(A) equilateral Δ
(B) isosceles Δ
(C) right Δ
(D) None of these
11. The points $(1,7),(4,2)(-1,1)(-4,4)$ are the vertices of a :
(A) parallelogram
(B) rhombus
(C) rectangle
(D) square.
12. The line segment joining $(2,-3)$ and $(5,6)$ is divided by x-axis in the ratio:
(A) $2: 1$
(B) $3: 1$
(C) $1: 2$
(D) $1: 3$.
13. The line segment joining the points $(3,5)$ and $(-4,2)$ is divided by y-axis in the ratio:
(A) $5: 3$
(B) $3: 5$
(C) $4: 3$
(D) $3: 4$.
14. If $(3,2),(4, k)$ and $(5,3)$ are collinear then k is equal to :
(A) $\frac{2}{3}$
(B) $\frac{2}{5}$
(C) $\frac{5}{2}$
(D) $\frac{3}{5}$
15. If the points $(\mathrm{p}, 0),(0, \mathrm{q})$ and $(1,1)$ are collinear then $\frac{1}{p}+\frac{1}{q}$ is equal to :
(A) -1
(B) 1
(C) 2
(D) 0
16. Two vertices of a triangle are $(-2,-3)$ and $(4,-1)$ and centroid is at the origin. The coordinates of the third vertex of the triangle are :
(A) $(-2,3)$
(B) $(-3,-2)$
(C) $(-2,4)$
(D) $(4,-2)$
17. $\mathrm{A}(5,1), \mathrm{B}(1,5)$ and $\mathrm{C}(-3,-1)$ are the vertices of $\triangle \mathrm{ABC}$. The length of its median AD is :
(A) $\sqrt{34}$
(B) $\sqrt{35}$
(C) $\sqrt{37}$
(D) 6
18. Three consecutive vertices of a parallelogram are $(1,-2),(3,6)$ and $(5,10)$. The coordinates of the fourth vertex are :
(A) $(-3,2)$
(B) $(2,-3)$
(C) $(3,2)$
(D) $(-2,-3)$
19. The vertices of a parallelogram are $(3,-2),(4,0),(6,-3)$ and $(5,-5)$. The diagonals intersect at the point M. The coordinates of the point M are :
(A) $\left(\frac{9}{2}, \frac{5}{2}\right)$
(B) $\left(\frac{7}{2}, \frac{5}{2}\right)$
(C) $\left(\frac{7}{2}, \frac{3}{2}\right)$
(D) None of these
20. If two vertices of a parallelogram are $(3,2)$ and $(-1,0)$ and the diagonals intersect at $(2,-5)$, then the other two vertex are :
(A) $(1,-10),(5,-12)$
(B) $(1,-12),(5,-10)$
(C) $(2,-10)$
(D) $(1,-10),(2,-12)$

| OBJECTIVE | | | ANSWER KEY | | | | EXERCISE-4 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Que. | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| Ans. | D | C | A | C | B | C | A | B | A | C |
| Que. | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ |
| Ans. | D | A | D | C | C | C | C | C | A | B |

SUBJECTIVE TYPE QUESTIONS

Short Answer Type Questions

1. Find the distance between the points A and B in the following :
(i) $A(a+b, b-a), B(a-b, a+b)$
(ii) $A(1,-1), B\left(-\frac{1}{2}, \frac{1}{2}\right)$
2. Find the distance between the points A and B in the following :
(i) $A(8-2), B(3-6)$
(ii) $A(a+b, a-b), B(a-b,-a-b)$
3. A point P lies on the x -axis and has abscissa 5 and a point Q lies on y -axis and has ordinate -12 . Find the distance PQ.
4. Find a relation between x and y such that the point (x, y) is equidistant from $(7,1)$ and $(3,5)$.
5. Using distance formula, show that the points A, B and C are collinear.
(i) $A(-1,-1), B(2,3), C(8,11)$
(ii) $A(-4,-2), B(-1,1), C(1,3)$
6. Find a point on the x-axis which is equidistant from the points $(5,4)$ and $(-2,3)$.
7. Find a point on the x-axis which is equidistant from the points $(-3,4)$ and $(2,3)$.
8. Find the value of k, if the point $(2,3)$ is equidistant from the points $A(k, 1)$ and $B(7, k)$.
9. Find the value of k for which the distance between the point $A(3 k, 4)$ and $B(2, k)$ is $5 \sqrt{2}$ units.
10. Find the co-ordinates of the point which divides the line segment joining the points $(1,-3)$ and $(-3,9)$ in the ratio 1 : 3 internally.
11. Find the mid-point of $A B$ where A and B are the points $(-5,11)$ and $(7,3)$ respectively.
12. The mid-point of a line segment is $(5,8)$. If one end points is $(3,5)$, find the second end point.
13. The vertices of a triangle are $A(3,4),(7,2)$ and $C(-2,-5)$. Find the length of the median through the vertex A.
14. The co-ordinates of A and B are $(1,2)$ and $(2,3)$ respectively. Find the co-ordinates of R on line segment $A B$ so that $\frac{A R}{R B}=\frac{4}{3}$.
15. Find the co-ordinates of the centre of a circle, the co-ordinates of the end points of a diameter being $(-3,8)$ and (5, 6)
16. Find the co-ordinates of the point where the diagonals of the parallelogram formed by joining the points $(-2,-1)$, $(1,0),(4,3)$ and $(1,2)$ meet.
17. Find the ratio in which the line segment joining the points $(3,5)$ and $(-4,2)$ is divided by y-axis.
18. In what ratio in does the point $\left(\frac{1}{2}, \frac{-3}{2}\right)$ divide the line segment joining the points $(3,5)$ and $(-7,9)$?
19. By using section formula, show that the points $(-1,2),(2,5)$ and $(5,8)$ are collinear.
20. Find the distance of the point $(1,2)$ from the mid-point of the line segment joining the points $(6,8)$ and $(2,4)$.
21. Show that the mid-point of the line segment joining the points $(5,7)$ and $(3,9)$ is also the mid-point of the line segment joining the points $(8,6)$ and $(0,10)$.
22. Find the area of the triangle whose vertices are $(3,2)(-2,-3)$ and $(2,3)$.
23. For what value of m, the points $(3,5),(m, 6)$ and $\left(\frac{1}{2}, \frac{15}{2}\right)$ are collinear ?

LONG Answer Type Question

1. Prove that the points $(1,4),(3,6)$ and $(9,-2)$ are the vertices of an isosceles triangle.
2. Find the co-ordinates of the point equidistant from three given points $\mathrm{A}(5,1), \mathrm{B}(-3,-7)$ and $\mathrm{C}(7,-1)$.
3. Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
4. Prove that the points $(0,1),(1,4),(4,3)$ and $(3,0)$ are the vertices of a square.
5. Prove that the points $(-4,-1),(-2,-4),(4,0)$ and $(2,3)$ are the vertices of a rectangle.
6. If two vertices of an equilateral triangle are $(0,0)$ and $(3, \sqrt{3})$, find the third vertex of the triangle.
7. $A(3,4)$ and $C(1,-1)$ are the two opposite angular points of a square $A B C D$. Find the co-ordinates two vertices
8. Find the co-ordinates of the point equidistant from the point $\mathrm{A}(-2,-3), \mathrm{B}(-1,0)$ and $\mathrm{C}(7,-6)$.
9. Show that $(3,3)$ is the centre of the circle passing through the points $(4,6),(0,4),(6,2)$ and $(4,0)$. What radius of the circle.

10. If $A(2,-1), B(3,4), C(-2,3)$ and $D(-3,-2)$ be four points in a co-ordinates plane, show that $A B C D$ is a rhombus but not a square. Find the area of the rhombus.
11. In figure, find the co-ordinates of the centre of the circle which is drawn through the points A, B and O .

12. The line segment joining the points $(3,-1)$ and $(1,2)$ is trisected at the points P and Q. If the co-ordinates of P and Q are $(\mathrm{p},-2)$ and $\left(\frac{5}{2}, q\right)$ respectively, find the values of P and Q .
13. What will be the value of y if the point $\left(\frac{23}{5}, y\right)$, divides the line segment joining the points $(5,7)$ and $(4,5)$ in the ratio 2 : 3 internally.
14. Find the co-ordinates of the points which divide the line segment joining the points $(-4,0)$ and $(0,6)$ in 4 equal parts.
15. If the points $(10,5)(8,4)$ and $(6,6)$ are the mid-points of the sides of a triangle, find its vertices.
16. Find the area of the quadrilateral $A B C D$ formed by the points $A(-2,-2), B(5,1), C(2,4)$ and $(-1,5)$..
17. Find the point on the x-axis which is equidistant from the points $(-2,5)$ and $(2,-3)$. Hence, find the area of the triangle formed by these points.
18. $\mathrm{A}(4,3), \mathrm{B}(6,5)$ and $\mathrm{C}(5,-2)$ are the vertices of $\Delta \mathrm{ABC}$.
(i) Find the co-ordinates of the centroid G of $\triangle \mathrm{ABC}$. Find the area of $\Delta \mathrm{ABC}$ and compare it with area of $\triangle \mathrm{ABC}$.
(ii) If D is the mid-point of BC , find the co-ordinates of D . Find the co-ordinates of a point P on AD such that $\mathrm{AP}: \mathrm{PD}=2: 3$. Find the area of $\triangle \mathrm{ABC}$ and compare it with area of $\triangle \mathrm{ABC}$.
19. $A B C D E$ is a polygon whose vertices are $A(-1,0), B(4,0), C(4,4), D(0,7)$ and $E(-6,2)$. Find the area of the polygon.
20. Name the quadrilateral formed by joining the points $(1,2),(5,4),(3,8)$ and $(-1,6)$ in order. Find also the area of the region formed by joining the mid-points of the sides of this quadrilateral.

Short Answer Type Question :

1. (i) $2 \sqrt{a^{2}+b^{2}}$ units, (ii) $\frac{3 \sqrt{2}}{2}$ units 2. (i) $\sqrt{41}$ units, (ii) $2 \sqrt{a^{2}+b^{2}}$ units 3. 13 units
2. $\mathrm{x}-\mathrm{y}=2$
3. $(2,0)$
4. $(0,6)$
5. $\mathrm{k}=13$
6. $\mathrm{k}=-1$ or $\mathrm{k}=3$
7. $(0,0)$
8. $(1,7)$
9. $(7,11)$
10. $\frac{\sqrt{122}}{2}$ units,
11. $\left(\frac{11}{7}, \frac{18}{7}\right)$
12. $(1,7)$
13. $(1,1)$
14. $3: 4$
15. $1: 3$
16. 5 units
17. 5 sq. unit
18. $\mathrm{m}=2$

Long Answer Type Questions :

1. $(2,-4)$ 2. $(0,2 \sqrt{3})$ or $(3,-\sqrt{3})$ 3. $\left(\frac{9}{2}, \frac{1}{2}\right),\left(-\frac{1}{2}, \frac{5}{2}\right)$ 4. $(3,-3) \quad$ 5. $\sqrt{10}$ units 6.24 sq. units
2. $\left(\frac{15}{14}, \frac{25}{14}\right)$
3. $p=\frac{7}{3}, q=0$
4. $\frac{31}{5}$
5. $\left(-3, \frac{3}{2}\right),(-2,3),\left(-1, \frac{9}{2}\right)$
6. $(8,7),(12,3),(4,5)$
7. 26 sq. units
8. $(-2,0), 10$ sq. units
9. (i) $G(5,2)$; ar $(\Delta G B C)=2$ sq. units ; ar $(\Delta G B C)$: ar $(\Delta \mathrm{ABC})=1: 3$
(ii) $D\left(\frac{11}{2}, \frac{3}{2}\right) ; P\left(\frac{23}{5}, \frac{12}{5}\right)$; ar $(\triangle \mathrm{PBC})=\frac{18}{5}$ sq. units ; $\operatorname{ar}(\triangle \mathrm{PBC}): \operatorname{ar}(\triangle \mathrm{ABC})=3: 5$
10. 44 sq. units 20. Square; 10 sq. units.

PREVIOUS YEARS BOARD (CBSE) QUESTIONS

1. Show that the point $A(5,6), B(1,5), C(2,1)$ and $D(6,2)$ are the vertices of a square.
[Delhi-2004]
2. Determine the ratio in which the point $P(m, 6)$ divide the join of $A(-4,3)$ and $B(2,8)$. Also find the value of m.

OR

$A(3,2)$ and $B(-2,1)$ are two vertices of a triangle $A B C$, whose centroid G has coordinates $\left(\frac{5}{3},-\frac{1}{3}\right)$. Find the coordinates of the third vertex C of the triangle.
[Delhi-2004]
3. Show that the points $\mathrm{A}(2,-2), \mathrm{B}(14,10), \mathrm{C}(11,13)$ and $\mathrm{D}(-1,1)$ are the vertices of a rectangle.
[Al-2004]
4. Prove that the coordinates of the centroid of a $\Delta \mathrm{ABC}$, with vertices. $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are given by $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+3_{3}}{2}\right)$
[Al-2004]
5. Determine the ratio in which the point $(-6$, a) divide the join of $A(-3,-1)$ and $B(-8,9)$. Also find the value of a.
[Al-2004]
6. Find the point on the x-axis which is equidistant from the points $(-2,5)$ and $(2,-3)$
[Al-2004]
7. Prove that the points $\mathrm{A}(0,1), \mathrm{B}(1,4), \mathrm{C}(4,3)$ and $(3,0)$ are the vertices of a square.
[Foreign-2004]
8. Determine the ratio in which the point $(a,-2)$ divide the join of $A(-4,3)$ and $B(2,-4)$. Also find the value of a.
[Foreign-2004]
9. Determine the ratio in which the point $P(k, 2)$ divide the join of $A(-3,5)$ and $B(5,1)$. Also find the value of k.
[Foreign-2004]
10. Determine the ratio in which the point $P(b, 1)$ divide the join of $A(7,-2)$ and $B(-5,6)$. Also find the value of b.
[Foreign-2004]
11. The coordinates of the mid-point of the line joining the point (3p, 4) and ($-2,2 q$) are ($5, p$). Find the coordinates of p and q.
[Delhi-2004C]
12. Two vertices of a triangle are $(1,2)$ and $(3,5)$. If the controid of the triangle is at the origin, find the coordinates of the third vertex.

OR

If ' a ' is the length of one of the sides of an equilateral triangle $A B C$, base $B C$ lies on x-axis and vertex B is at the origin, find the coordinates of the vertices of the triangle ABC.
[Delhi-2004C]
13. Find the ratio in which the one-segment joining the points $(6,4)$ and $(1,-7)$ is divided by x-axis . [Al-2004C]

OR

The coordinates of two vertices A and B of a tnangle An are $(1,4)$ and $(5,3)$ respectively. If the coordinates of the centroid of $\triangle \mathrm{ABC}$ are $(3,3)$, find the coordinates of the third vertex C .
[Al-2004C]
14. Find the value of m for which the points with coordinates $(3,5),(m, 6)$ and $\left(\frac{1}{2}, \frac{15}{2}\right)$ are collinear. [Al-2004C]
15. Find the value of x such that $P Q=Q R$ where the coordinates of P, Q and R are $(6,-1) ;(1,3)$ and $(x, 8)$ respectively.

OR

Find a point on x -axis which is equidistant from the points $(7,6)$ and $(-3,4)$.
[Delhi-2004]
16. The line-segment joining the points $(3,-4)$ and $(1,2)$ is trisected at the points P and Q. If the coordinates of P and Q are $(p, 2)$ and $\left(\frac{5}{3}, q\right)$ respectively, find the values of p and q.
[Delhi-2005]
17. Prove that the points $(0,0),(5,5)$ are vertices of a right isosceles triangle.

OR

If the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from the point $\mathrm{A}(5,1)$ and $\mathrm{B}(-1,5)$, prove that $3 \mathrm{x}=2 \mathrm{y}$.
[Al-2005]
18. The line joining the points $(2,1)$ and $(5,-8)$ is trisected at the points p and Q. If point P lies on the line $2 x-y+k=$ 0 , find the value of k .
[Al-2005]
19. Show that the points $(0,-1) ;(2,1) ;(0,3)$ and $(-2,1)$ are the vertices of a square.

OR

Find the value of K such that the point $(0,2)$ is equidistant from the points $(3, K)$ and $(K, 5)$. [Foreign-2005]
20. The base BC of an equilateral $\Delta \mathrm{ABC}$ lies on y -axis. The coordinates of point C are $(0,-3)$. If the origin is the midpoint of the base BC , find the coordinates of the points A and B .
[Foreign-2005]
21. Find the coordinates of the point equidistant from the points $\mathrm{A}(1,2), \mathrm{B}(3,-4)$ and $\mathrm{C}(5,-6)$.

OR

Prove that the points $\mathrm{A}(-4,-1), \mathrm{B}(-2,-4), \mathrm{C}(4,0)$ and $(2,3)$ are the vertices of a rectangle.
[Delhi-2005C]
22. Find the coordinates of the points which divide the line-segment joining the points $(-4,0)$ and $(0,6)$ in three equal parts.
[Delhi-2005C]
23. Two vertices of $\triangle \mathrm{ABC}$ are given by $\mathrm{A}(2,3)$ and $\mathrm{B}(-2,1)$ and its centroid is $\mathrm{G}\left(1, \frac{2}{3}\right)$. Find the coordinates of the third vertex C of the $\triangle \mathrm{ABC}$.
[Al-2005]
24. Show that the points $\mathrm{A}(1,2), \mathrm{B}(5,4), \mathrm{C}(3,8)$ and $\mathrm{D}(-1,6)$ are the vertices of a square.

OR
Find the co-ordinates of the point equidistant from three given points $\mathrm{A}(5,1), \mathrm{B}(-3,-7)$ and $\mathrm{C}(7,-1)$
[Delhi-2006]
25. Find the value of p for which the points $(-1,3),(2, p)$ and $(5,-1)$ are collinear.
[Delhi-2006]
26. If the points $(10,5),(8,4)$ and $(6,6)$ are the mid. Points of the sides of a triangle, find its vertices. [Foreign-2006]
27. In what ratio is the line segment joining the points $(-2,-3)$ and $(3,7)$ divided by the y-axis? Also, find the coordinates of the point of division.

OR

If A $(5,-1)$, $B(-3,-2)$ and $C(-1,8)$ are the vertices of triangle $A B C$, find the length of median through A and the coordinates of the centroid.
[Delhi-2006C]
28. If $(-2,-1) ;(a, 0) ;(4, b)$ and $C(1,2)$ are the vertices of a parallelogram, find the values of a and b.
[Al-2006C]
29. Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are the vertices of an isosceles right triangle.
[Delhi-2007]
30. In what ratio does the lines $x-y-2=0$ divides the line segment joining $(3,-1)$ and $(8,9)$?
[Delhi-2007]
31. Three consecutive vertices of a parallelogram are $(-2,1) ;(1,0)$ and $(4,3)$. Find the coordinates of the fourth vertex.
32. If the point $C(-1,2)$ divides the line segment $A B$ in the ratio $3: 4$ where the coordinates of A are $(2,5)$, find the coordinates of B.
[Al-2007]
33. For what value of p, are the points $(2,1),(p,-1)$ and $(-1,3)$ collinear?
[Delhi-2008]
34. Determine the ratio in which the line $3 x+4 y-9=0$ divides joining the points $(1,3)$ and $(2,7)$.
[Delhi-2008]
35. If the distances of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ from the points $\mathrm{A}(3,6)$ and $\mathrm{B}(-3,4)$ are equal, prove that $3 \mathrm{x}+\mathrm{y}=5$.
[Delhi-2008]
36. For what value of p, the points $(-5,1),(1, p)$ and $(4,-2)$ are collinear?
[Delhi-2008]
37. For what value of k, are the points $(1,1),(3, k)$ and $(-1,4)$ are collinear?
[Delhi-2008]

OR

Find the area of the $\triangle \mathrm{ABC}$ with vertices $\mathrm{A}(-5,7), \mathrm{B}(-4,-5)$ and $\mathrm{C}(4,5)$
[Al-2008]
38. If the point $P(x, y)$ is equidistant from the points $A(3,6)$ and $B(-3,4)$ prove that $3 x+y-5=0$.
[Al-2008]
39. The point R divides the line segment $A B$, where $A(-4,0)$ and $B(0,6)$ such that $A R=\frac{2}{3}$ AB. Find the co-ordinates of R.
[AI-2008]
40. The co-ordinates of A and B are $(1,2)$ and $(2,3)$ respectively. If P lies on $A B$ find co-ordinates of P such that $\frac{A P}{P B}=\frac{3}{4}$.
[AI-2008]
41. If $A(4,-8), B(3,6)$ and $C(5,-4)$ are the vertices of a $\triangle A B C, D$ is the mid point of $B C$ and P is a point on $A D$ joining such that $\frac{A P}{P D}=2$, find the co-ordinates of P.
[Al-2008]
42. Find the value of k if the points $(k, 3),(6,-2)$ and $(-3,4)$ are collinear.
[Foreign-2008]
43. If P divides the join of $\mathrm{A}(-2,-2)$ and $\mathrm{B}(2,-4)$ such that $\frac{A P}{A B}=\frac{3}{7}$, find the co-ordinates of P . [Foreign-2008]
44. The mid points of the sides of a triangle are $(3,4),(4,6)$ and $(5,7)$. Find the co-ordinates of the vertices the triangle.
[Foreign-2008]
45. Show that $\mathrm{A}(-3,2), \mathrm{B}(-5,-5), \mathrm{C}(2,-3)$ and $\mathrm{D}(4,4)$ are the vertices of a rhombus.
[Foreign-2008]
46. Find the ratio in which the line $3 x+y-9=0$ divides the line-segment joining the points $(1,3)$ and $(2,7)$.
[Foreign-2008]
47. Find the distance between the points $\left(\frac{-8}{5}, 2\right)$ and $\left(\frac{2}{5}, 2\right)$.
[Delhi-2009]
48. Find the point on y-axis which is equidistant from the points $(5,-2)$ and $(-3,2)$.

OR
The line segment joining the points $\mathrm{A}(2,1)$ and $\mathrm{B}(5,-8)$ is trisected at the points P and Q such that P is nearer to A . If P also lies on the line given by $2 x-y+k=0$, find the value of k.
[Delhi-2009]
49. If $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is any point on the line joining the points $\mathrm{A}(\mathrm{a}, 0)$ and $\mathrm{B}(0, \mathrm{~b})$, then show that $\frac{x}{a}+\frac{y}{b}=1$. [Delhi-2009]
50. Find the point on x-axis which is equidistant from the points $(2,-5)$ and $(-2,9)$
[Delhi-2009]
OR
The line segment joining the points $\mathrm{P}(3,3), \mathrm{Q}(6,-6)$ is trisected at the points A and B such that A is nearer to P . If A also lies on the line given by $2 x+y+k=0$, find the value of k.
51. If the points $A P(4,3)$ and $B(x, 5)$ are on the circle with the centre $O(2,3)$, find the value of x.
[Al-2009]
52. Find the ratio in which the point $(2, y)$ divides the line segment joining the points $A(-2,2)$ and $B(3,7)$. Also find the value of y .
[Al-2009]
53. Find the area of the quadrilateral ABCD whose vertices are $\mathrm{A}(-4,-2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)$ and $\mathrm{D}(2,3)$. [Al-2009]
54. Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are
$(0,-1),(2,1)$ and $(0,3)$.
[Al-2009]
55. If the mid-point of the line segment joining the points $\mathrm{P}(6, \mathrm{~b}-2)$ and $\mathrm{Q}(2,-3)$, find the value of b .
[Foreign-2009]
56. Show that the points $(-2,5),(3,-4)$ and $(7,10)$ are the vertices of a right angled isosceles triangle.

OR

The centre of a circle is $(2 \alpha-1,7)$ and it passes through the point $(-3,-1)$. If the diameter of the circle is 20 units, then find the value(s) of α.
[Foreign-2009]
57. If C is a point lying on the line segment AB joining $\mathrm{A}(1,1)$ and $\mathrm{B}(2,-3)$ such that $3 \mathrm{AC}=\mathrm{CB}$, then find the coordinates of C.
[Foreign-2009]
58. Find a relation between x and y if the points $(x, y),(1,2)$ and $(7,0)$ are collinear.
[Foreign-2009]
59. If the points $(-2,1),(a, b)$ and $(4,-1)$ are collinear and $a-b=1$, then find the values of a and b. [Foreign-2009]
60. Find the value of K, if the points $A(7,-2), B(5,1)$ and $C(3,2 K)$ are collinear.
[Al-2010]
61. Find the value of K, if the points $A(8,1), B(3,-4)$ and $C(2, K)$ are collinear.
[Al-2010]
62. Point P divides the line segment joining the points $\mathrm{A}(-1,3)$ and $\mathrm{B}(9,8)$ such that $\frac{A P}{P B}=\frac{K}{1}$. If P lies on the line $x-y+2=0$, find the value of K.
[Al-2010]
63. If the points $(p, q),(m, n)$ and $(p-m, q-n)$ are collinear, show that $p n=q m$.
[Al-2010]

CO-ORDINATE GEOMETRY

ANSWER KEY
EXERCISE-2 (X)-
CDCE

Short Answer Type

2. $3: 2,-2 / 5$ or $(4,-4)$
3. $3: 2,5$
4. $(-2,0)$
5. $2 / 7$
6. 3
7. $p=4, q=2$
8. $(-4,-7)$ or $\mathrm{A}(a / 2, \sqrt{3 a} / 2), \mathrm{B}(0,0), \mathrm{C}(\mathrm{a}, 0)$
9. $4: 7$ or $(3,2)$
10. 2 15. 5 or -3 or $(3,0)$
11. $p=\frac{7}{3}, \mathrm{q}=0$
12. $\mathrm{k}=-8$
13. $k=1$
14. $(\pm 3 \sqrt{3}, 0)$
,0) and (0,3)
15. $(11,2)$
16. $\left(\frac{-8}{3}, 2\right),\left(\frac{-4}{3}, 4\right)$
17. $(3,-2)$
18. $(2,-4)$
19. $p=1$
20. (4, 5), (8, 7), (12, 3)
21. $2: 3,(0,1)$ or $\sqrt{65},\left(\frac{1}{3}, \frac{5}{3}\right)$
22. $a=1, b=3$
23. $2: 3$
24. $(1,2)$
25. $(-5,-2)$
26. $p=5$
27. $6: 25$
28. -1
29. -2 or 53 sq. units
30. $\left(-1, \frac{9}{2}\right)$
31. $\left(\frac{11}{7}, \frac{18}{7}\right)$
32. $(4,-2)$
33. $k=-\frac{3}{2}$
34. $\left(\frac{-2}{7}, \frac{-20}{7}\right)$
35. (4, 5), (2, 3), (6, 9)
36. 3 : 4
47.2
37. $(0,-2)$ or -8
38. $(-7,0)$ or -8
39. 2
40. $4: 1,6$
41. 28 sq. units
42. 1 sq. units
43. -8
44. -4 or 2
45. $\left(\frac{5}{4}, 0\right)$
46. $x+3 y=7$
47. $\mathrm{a}=1, \mathrm{~b}=0$
60.2
48. -5
49. $\frac{2}{3}$

COMPETITION WINDOW

PROPERTIES OF TRIANGLES

Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right), C\left(x_{3}, y_{3}\right)$ be the vertices of any $\triangle A B C$, then

1. Controid : It is the point of intersection of the cedians. It divides the median in the ratio of $2: 1$.

Co-ordinates of controid : $\mathrm{G}\left[\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+{ }_{3}}{3}\right]$

2. Incentre : It is the point of intersection of internal bisectors of the angle. Also it is the centre of the circle touching all the sides of a triangle.
Co-ordinates of incentre $\left[\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right]$. Where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the lengths of the sides of triangle.
The radius of incircle.

$$
r=\frac{\Delta}{S}
$$

Where Δ is the area of Triangle and

$$
S=\frac{a+b+c}{2}
$$

Remark : An angle bisector of a triangle divides the opposite side in the ratio of remaining sides.
E.g. AD divides BC in the ratio $\frac{B D}{D C}=\frac{A B}{A C}$.
3. Circumcentre : It is the point of intersection of perpendicular bisectors of the sides of a triangle. It is also the centre of the circle passing through the vertices of a triangle.
If O is the circumcentre of a triangle $A B C$, then $O A=O B=O C=$ circumradius.
4. Orthocentre : It is the point of intersection of altitudes of a triangle.

(i) In an equilateral triangle, the centroid, incentre, orthocenter and circumcentre coincide.
(ii) In an isosceles triangle, the centroid, incentre, orthocenter and circumcentre are collinear.
(iii) In a right angled triangle, the circumcentre is the mid point of hypotenuse and the orthocenter is the point where right angle is formed.
(iv) Euler line : The circumcentre O, the centroid G and the orthocenter H of a triangle are collinear, the line on which they lie is called Euler line. Also G divides HO in the ratio $2: 1$.

$$
\frac{O G}{G H}=\frac{1}{2}
$$

TRY OUT THE FOLLOWING

1. Two vertices of a triangle are $(-1,6)$ are $(5,2)$. If its centroid is $(0,-3)$, find the third vertex.
2. If $\left(\frac{3}{2}, 0\right),\left(\frac{3}{2}, 6\right)$ and $(-1,6)$ are mid-points of the sides of a triangle, then find
(i) Centroid of the triangle
(ii) Incentre of the triangle.
3. If a triangle has it's orhtocentre at $(1,1)$ and circumcentre at $\left(\frac{3}{2}, \frac{3}{4}\right)$, then find the centriod.

ANSWERS

1. $(-4,-15) \quad$ 2. (i) $(2 / 3,4)$ (ii) $(1,2) \quad$ 3. $(4 / 3,5 / 6)$

COMPETITION WINDOW

CONDITIONS FOR A TRIANGLE TO BE ACUTE, OBTUSE OR RIGHT ANGLED
For an acute angled triangle, $a^{2}+b^{2}>c^{2}, b^{2}+c^{2}>a^{2}$ and $a^{2}+b^{2}>c^{2}$.
For an obtuse angled triangle, $a^{2}+b^{2}>c^{2}$
$a^{2}+c^{2}>b^{2}$
(if $\angle \mathrm{C}$ is obtuse)
$b^{2}+c^{2}>a^{2}$
(if $\angle \mathrm{B}$ is obtuse)
(if $\angle \mathrm{A}$ is obtuse)
For a right angled triangle,
$a^{2}+b^{2}=c^{2} \quad\left(\right.$ if $\left.\angle \mathrm{C}=90^{\circ}\right)$
$b^{2}+c^{2}=a^{2}$
(if $\angle \mathrm{A}=90^{\circ}$)
$a^{2}+c^{2}=b^{2}$
(if $\angle \mathrm{B}=90^{\circ}$)
Where a, b and c have their usual meanings.

COMPETITION WINDOW

CONCURRENCY OF LINES

Three lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ and $a_{3} x+b_{3} y+c_{3}=0$ are said to be concurrent (lines passing through the same point) if $a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+a_{2}\left(b_{3} c_{1}-b_{1} c_{3}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)=0$

TRY OUT THE FOLLOWING

1. Prove that the lines $3 x+y-14=0, x-2 y=0$ and $3 x-8 y+4=0$ are concurrent.
2. Show that the lines $x-y-6=0,4 x-3 y-20=0$ and $6 x+5 y+8=0$ are concurrent. Also find their common point of intersection.
3. Find the value of λ, if the lines $3 x-4 y-13=0,8 x-11 y-33=0$ and $2 x-3 y+\lambda=0$ are concurrent.

ANSWER

2.

$(2,-4)$
3. $\lambda=-7$

Choose The Correct One

1. The circumcentre of the triangle formed by the lines $x y+2 x+2 y+4=0$ and $x+y+2=0$ is :
(A) $(-1,-2)$
(B) $(-1,-1)$
(C) $(-2,-2)$
(D) $(0,0)$
2. The vertices of a triangle ($\mathrm{a}, \mathrm{b}-\mathrm{c}$), ($\mathrm{b}, \mathrm{c}-\mathrm{a}$) and $(\mathrm{c}, \mathrm{a}-\mathrm{b})$, then it's centroid lies on :
(A) y-axis
(B) x-axis
(C) $x=0$
(D) None of these
3. The points $(1,2),(3,8)$ and $(x, 20)$ are collinear if $x=$
(A) 4
(B) 5
(C) 6
(D) 7
4. For the triangle whose sides are along the lines $\mathrm{x}=0, \mathrm{y}=0$ and $\frac{x}{6}+\frac{y}{8}=1$, the incentre is :
(A) $(3,4)$
(B) $(2,2)$
(C) $(2,3)$
(D) $(3,2)$
5. For the triangle whose sides are along the lines $y=15,3 x-4 y=0,5 x+12 y=0$, the incentre is :
(A) $(1,8)$
(B) $(-1,8)$
(C) $(8,1)$
(D) None of these
6. The points $D(2,1), E(-1,-2)$ and $F(3,3)$ are the mid points of sides $B C, C A$ and $A B$ respectively of a $\triangle A B C$. The vertices A, B and C are :
(A) $(0,0),(6,6),(-2,-4)$
(B) $(0,1),(6,6),(2,4)$
(C) $(1,0),(3,3),(-2,-4)$
(D) None of these
7. The number of integral values of m, for which x-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $\mathrm{y}=\mathrm{mx}+1$ is also an integer, is :
(A) 2
(B) 0
(C) 4
(D) 1
8. The radius of the circle inscribed in the triangle formed by lines $x=0, y=0,4 x+3 y-24=0$ is :
(A) 12
(B) 2
(C) $2 \sqrt{2}$
(D) 6
9. In a $\triangle \mathrm{ABC}$, if A is the point $(1,2)$ and equations of the median through B and C are respectively $\mathrm{x}+\mathrm{y}=5$ and $\mathrm{x}=$ 4, then B is :
(A) $(1,4)$
(B) $(7,-2)$
(C) $(4,1)$
(D) $(-2,7)$
10. The straight line $3 x+y=9$ divides the segment joining the points $(1,3)$ and $(2,7)$ in the ratio :
(A) $4: 3$
(B) $3: 4$
(C) $4: 5$
(D) $5: 6$
11. Two opposite vertices of a rectangle are $(1,3)$ and $(5,1)$. If the equation of a diagonal this rectangle is $y=2 x+c$, then the value of c is :
(A) -4
(B) 1
(C) -9
(D) None of these
12. The radius of the circle passing through the point $(6,2)$ two of whose diameters are $x+y=6$ and $x+2 y=4$ is :
(A) 10
(B) $2 \sqrt{5}$
(C) 6
(D) 4
13. The straight lines $x+y=0,3 x+y-4=0, x+3 y-4=0$ form a triangle which is :
(A) Isosceles
(B) Equilateral
(C) Right angled
(D) None of these
14. The lines segment joining the points $(1,2)$ and $(-2,1)$ is divided by the line $3 x+4 y=7$ in the ratio :
(A) $3: 4$
(B) $4: 3$
(C) $9: 4$
(D) $4: 9$
15. If a, b, c are in A. P. then the straight line $a x+b y+c=0$ will always pass through a fixed point whose co-ordinates are :
(A) $(1,-2)$
(B) $(-1,2)$
(C) $(1,2)$
(D) $(-1,-2)$
16. The lines $8 x+4 y=1,8 x+4 y=5,4 x+8 y=3,4 x+8 y=7$ from a :
(A) Rhombus
(B) Rectangle
(C) Square
(D) None of these
17. The incentre of the triangle formed by the lines $y=15,12 y=5 x$ and $3 x+4 y=0$ is :
(A) $(8,1)$
(B) $(-1,8)$
(C) $(1,8)$
(D) None of these
18. The area of triangle formed by the lines $y=x, y=2 x$ and $y=3 x+4$ is :
(A) 4
(B) 7
(C) 9
(D) 8
19. The triangle formed by the lines $x+y=1,2 x+3 y-6=0$ and $4 x-y+4=0$ lies in the :
(A) First quadrant
(B) Second quadrant
(C) Third quadrant
(D) Fourth quadrant
20. A line is drawn through the points $(3,4)$ and $(5,6)$. If the line is extended to a point whose ordinate is -1 , then the abscissa of that point is ;
(A) 0
(B) -2
(C) 1
(D) 2
21. The area of the triangle whose sides are along the lines $x=0, y=0$ and $4 x+5 y=20$ is :
(A) 20
(B) 10
(C) $\frac{1}{10}$
(D) $\frac{1}{20}$
22. If a, b, c are all distend, then the equations $(b-c) x+(c-a) y+a-b=0$ and $\left(b^{3}-c^{3}\right) x+\left(c^{3}-a^{3}\right) y+a^{3}-b^{3}=0$ represent the same line if :
(A) $a+b+c \neq 0$
(B) $\mathrm{a}+\mathrm{b} \mathrm{c}=0$
(C) $\mathrm{a}+\mathrm{b}=0$ or $\mathrm{b}+\mathrm{c}=0$
(D) None of these
23. The area of the quadrilateral with vertices at (4, 3$),(2,-1),(-1,2),(-3,-2)$ is :
(A) 18
(B) 36
(C) 54
(D) None of these
24. If α, β, γ are the real roots of the equation $\mathrm{x}^{3}-3 \mathrm{px}^{2}-1=0$, then the centroid of the triangle with vertices $\left(\alpha \frac{1}{\alpha}\right),\left(\beta \frac{1}{\beta}\right)$ and $\left(\gamma \frac{1}{\gamma}\right)$ is at the point :
(A) (p, q)
(B) $(\mathrm{p} / 3, \mathrm{q} / 3)$
(C) $(p+q, p-q)$
(D) (3p, 3q)
25. The co-ordinates of $A, B C$ are $(6,3),(-3,5),(4,-2)$ respectively and P is any point (x, y). the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABC}$ is:
(A) $\left|\frac{x-y-2}{7}\right|$
(B) $\left|\frac{x+y-2}{7}\right|$
(C) $\left|\frac{x+y+2}{7}\right|$
(D) None of these
26. The area of a triangle is 5 square units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex lie on $y=x+3$, the third vertex is :
(A) $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(\frac{-3}{2}, \frac{3}{2}\right)$
(B) $\left(\frac{7}{2}, \frac{-13}{2}\right) \operatorname{or}\left(\frac{-3}{2}, \frac{3}{2}\right)$
(C) $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(\frac{3}{2}, \frac{3}{2}\right)$
(D) None of these
27. The point of intersection of the lines $\frac{x}{a}+\frac{y}{b}=1$ and $\frac{x}{b}+\frac{y}{a}=1$, lies on the line :
(A) $x-y=0$
(B) $x+y=\frac{2 a b}{a+b}$
(C) $x-y \frac{2 a b}{a+b}$
(D) Both (A) and (B)
28. The point A divides the join of the points $(-5,1)$ and $(3,5)$ in the ratio $\mathrm{k}: 1$ and co-ordinates of points B and C are $(1,5)$ and $(7,-2)$ respectively. If the area of $\Delta \mathrm{ABC}$ be 2 units, then k equals :
(A) 7,9
(B) 6,7
(C) $7, \frac{31}{9}$
(D) $9, \frac{31}{9}$
29. Q, R and S are the points on the line joining the points $\mathrm{P}(\mathrm{a}, \mathrm{x})$ and $\mathrm{T}(\mathrm{b}, \mathrm{y})$ such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{ST}$, then $\left(\frac{5 a+3 b}{8}, \frac{5 x+3 y}{8}\right)$ is the mid point of the segment :
(A) PQ
(B) QR
(C) RS
(D) ST
30. The triangle with vertices $A(2,7), B(4, y)$ and $C(-2,6)$ is right angled at A if :
(A) $y=-1$
(B) $y=0$
(C) $y=1$
(D) None of these
31. The co-ordinates with of the point which divides the line segment joining $(-3,-4)$ and $(-8,7)$ externally in the ratio 7:5 are :
(A) $\left(\frac{41}{2}, \frac{69}{2}\right)$
(B) $\left(\frac{-41}{2}, \frac{-69}{2}\right)$
(C) $\left(\frac{-41}{2}, \frac{69}{2}\right)$
(D) None of these
32. The distance of the centroid from the orign of the friangle formed by the points $(1,1),(0,-7)$ and $(-4,0)$ is :
(A) $\sqrt{2}$
(B) $\sqrt{4}$
(C) $\sqrt{3}$
(D) $\sqrt{5}$
33. If $A(4,-3), B(3,-2)$ and $C(2,8)$ are vertices of a triangle, then the distance of it's centroid from the y-axis is :
(A) $\frac{1}{2}$
(B) 1
(C) 3
(D) $\frac{1}{2}$
34. If $(5,-4)$ and $(-3,2)$ are two opposite vertices of a square, then it's area is :
(A) 50
(B) 75
(C) 25
(D) 100
35. $A(6,3), B(-3,5), C(4,-2)$ and $(x, 3 x)$ are four points. If the areas of $\Delta D B C$ and $\Delta A B C$ are in the ratio $1: 2$, then x is equal to :
(A) $\frac{11}{8}$
(B) 3
(C) $\frac{8}{11}$
(D) None of these
36. An equilateral triangle whose circumcentre is $(-2,5)$, one side is on y-axis, then length of side of the triangle is :
(A) 6
(B) $2 \sqrt{3}$
(C) $4 \sqrt{3}$
(D) 4
37. $A(3,4)$, and $B(5,-2)$ are two given points. If $P A=P B$ and area of $\Delta P A B=10$. then P is :
(A) $(7,1)$
(B) $(7,2)$
(C) $(-7,2)$
(D) $(-7,-1)$
38. The distance between foot of perpendiculars drawn from a point $(-3,4)$ on both axes is :
39. Point P divides the line segment joining $A(-5,1)$ and $B(3,5)$ internally in the ratio $\lambda: 1$. If $Q=(1,5), R=(7,-2)$ and area of $\Delta \mathrm{PQR}=2$, then λ equals :
(A) 23
(B) $\frac{29}{5}$
(C) $\frac{31}{9}$
(D) None of these
40. The area of an equilateral triangle whose two vertices are $(1,0)$ and $(3,0)$ and third vertex lying in the first quadrant is :
(A) $\frac{\sqrt{3}}{4}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\sqrt{3}$
(D) None of these
41. $\quad \mathrm{ABC}$ is an isosceles triangle. If the co-ordinates of the base are $\mathrm{B}(1,3)$ and $\mathrm{C}(-2,7)$, the co-ordinates of vertex A is
(A) $\left(\frac{-1}{2}, 5\right)$
(B) $(1,6)$
(C) $\left(\frac{5}{6}, 6\right)$
(D) None of these
42. The area of the quadrilateral formed by the points $\left(a^{2}+2 a b, b^{2}\right),\left(a^{2}+b^{2}, 2 a b\right),\left(a^{2}, b^{2}+2 a b\right)$ and (a2 + b2 - 2ab, 4ab) is :
(A) Zero
(B) $(a+b)^{2}$
(C) $a^{2}+b^{2}$
(D) $(a-b)^{2}$

OBJECTIVE						ANSWER KEY				EXERCISE-4					
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	B	B	D	C	C	A	A	B	B	B	A	B	A	D	A
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	A	C	A	B	B	B	B	A	A	B	A	D	C	B	A
Que.	31	32	33	34	35	36	37	38	39	40	41	42			
Ans.	C	D	C	A	A	C	B	A	C	C	C	A			

Choose The Coreect One

1. The lines $\mathrm{ax}+2 \mathrm{y}+1=0, \mathrm{bx}+3 \mathrm{y}+1=0$ and $\mathrm{cx}+4 \mathrm{y}+1=0$ are concurrent, then :
(A) a, b, c are in A.P.
(B) a, b, c are in G.p.
(C) a, b, c are in H.P.
(D) None of these
2. If the lines $x+2 a y+a=0, x+3 b y+b=0$ and $x 4 c y+c=0$ are concurrent, then a, b, c are in $(a b c \neq 0)$:
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
3. If $(0, \beta)$ lies on or inside the triangle formed by the lines $3 x+y+2=0,3 y-2 x-5=0$ and $4 y+x-14=0$ then :
(A) $\frac{5}{2} \leq \beta \leq \frac{7}{3}$
(B) $\frac{5}{3} \leq \beta \leq \frac{7}{2}$
(C) $\frac{7}{3} \leq \beta \leq \frac{5}{2}$
(D) None of these
4. If a, x_{1}, x_{2} are in G.P. with common ratio $r 1$ and b, y_{1}, y_{2} are in G.P. with common ratio s where $s-r=2$, then the area of the triangle with vertices (a, b), ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$) is :
(A) $\left|a b\left(r^{2}-1\right)\right|$
(B) $a b\left(r^{2}-s^{2}\right)$
(C) ab $\left(s^{2}-1\right)$
(D) abrs
5. If the circumcentre of a triangle lies at the origin and the centroid is the middle point of the line joining the points $\left(a^{2}+1, a^{2}+{ }^{1}\right)$ and $(2 a,-2 a)$, then the co-ordinates of the orthocenter are :
(A) $\left[\frac{(a+1)^{2}}{4}, \frac{(a-1)^{2}}{4}\right]$
(B) $\left[\frac{3}{4}(a+1)^{2}, \frac{3}{4}(a-1)^{2}\right]$
(C) $\left(3(a+1)^{2}, 3(a-1)^{2}\right)$
(D) None of these
6. If every point on the line $\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right) \mathrm{x}+\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right) \mathrm{y}=\mathrm{c}$ is equidistant from the points $\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)$ and $\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$ then $2 \mathrm{c}=$
(A) $a_{1}^{2}-b_{1}^{2}+a_{2}^{2}+b_{2}^{2}$
(B) $a_{1}^{2}+b_{1}^{2}+a_{2}^{2}+b_{2}^{2}$
(C) $a_{1}^{2}-b_{1}^{2}-a_{2}^{2}-b_{2}^{2}$
(D) None of these
7. A rectangle has two opposite vertices at the points $(1,2)$ and $(5,5)$. If the other vertices lie on the line $x=3$, the co-ordinates of the vertex nearer the axis of x are :
(A) 3,1
(B) $(3,2)$
(C) $(3,4)$
(D) $(3,6)$
8. If the area of the triangle formed by the pair of lines $8 x^{2}-6 y^{2}+y^{2}=0$ and the line $2 x+3 y=a$ is 7 , then a is equal
(A) 14
(B) $14 \sqrt{2}$
(C) 28
(D) None of these
9. If the centroid of the triangle formed by the pair of lines $2 y^{2}+5 x y-3 x^{2}=0$ and $x+y=k$ is $\left(\frac{1}{18}, \frac{11}{18}\right)$, then the value of k is :
(A) -1
(B) 0
(C) 1
(D) None of these
10. If x_{1}, x_{2}, x_{3} are the abscissa of the points A_{1}, A_{2}, A_{3} respectively where the lines $y=m_{1}, x, y=m_{2} x, y=m_{3} x$ meet the line $2 \mathrm{x}-\mathrm{y}+3=0$ such that $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}$, are in A.P., then $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are in :
(A) A.P.
(B) G.P.
(C) H.P.
(D) None of these
11. The area of the triangle with vertices $\left(1, \frac{\pi}{8}\right),\left(1, \frac{5 \pi}{8}\right)$ and $\left(\sqrt{2} \frac{3 \pi}{8}\right)$ is :
(A) 2
(B) $\frac{1}{2}$
(C) 1
(D) $\frac{3}{2}$
12. An equilateral triangle whose orthocenter is (3, -2), one side is on x-axis then vertex of triangle which is not on x -axis is :
(A) $(3,-6)$
(B) $(1,-2)$
(C) $(9,-2)$
(D) $(3,-3)$
13. If O is the origin and the co-ordinates of A and B are $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively then $O A \times O B \cos \angle A O B$ is equal to :
(A) $x_{1} y_{1}+x_{2} y_{2}$
(B) $x_{1} x_{2}+y_{1} y_{2}$
(C) $x_{1} y_{2}+x_{2} y_{1}$
(D) $x_{1} x_{2}-y_{1} y_{2}$
14. If the vertices of a triangle have integral co-ordinates, then the triangle is :
(A) Isosceles
(B) Never equilateral
(C) Equilateral
(D) None of these
15. The circumcentre of the triangle formed by the points $(\mathrm{a} \cos \alpha, \mathrm{a} \sin \alpha),(\mathrm{a} \cos \beta, \sin \beta),(\mathrm{a} \cos \gamma, \sin \gamma)$ is
(A) $(0,0)$
(B) $\left[\left(\frac{a}{3}\right)(\cos \alpha+\cos \beta+\cos \gamma),\left(\frac{a}{3}\right)(\sin \alpha+\sin \beta+\sin \gamma)\right]$
(C) $(\mathrm{a}, 0)$
(D) None of these
16. The x co-ordinates of the incentre of the triangle where the mid point of the sides are $(0,1),(1,1)$ and $(1,0)$ is
(A) $2+\sqrt{2}$
(B) $1+\sqrt{2}$
(C) $2-\sqrt{2}$
(D) $1+\sqrt{2}$
17. $O P Q R$ is a square and M and N are the mid points of the sides $P Q$ and $Q R$ respectively, then ratio of area of square and the triangle OMN is :
(A) $4: 1$
(B) $2: 1$
(C) $8: 3$
(D) $4: 3$
18. The point with co-ordinates (2a, 3a), (3b, 2b) and (c, c) are collinear :
(A) For no value of a, b, c
(B) For all value of $\mathrm{a}, \mathrm{b}, \mathrm{c}$
(C) If a, $\frac{c}{5}$, b are in H.P.
(D) If $\mathrm{a}, \frac{2 \mathrm{c}}{5}$, b are in H.P.
19. If co-ordinates of orthocenter and centroid of a triangle are $(4,-1)$ and $(2,1)$, then co-ordinates of a point which is equidistant from the vertices of the triangle is :
(A) $(2,2)$
(B) $(3,2)$
(C) $(2,3)$
(D) None of these
20. If the line $y=m x$ meets the lines $x+2 y-1=0$ and $2 x-y+3=0$ at the number of points having integral to :
(A) - 2
(B) 2
(C) -1
(D) 1
21. A triangle is formed by the point $O(0,0), A(0,21)$ and $B(21,0)$. The number of points having integral co-ordinates (both x and y) and strictly inside the triangle is :
(A) 190
(B) 305
(C) 181
(D) 206
22. The straight lines $5 x+4 y=0, x+2 y-10=0$ and $2 x+y+5=0$ are :
(A) Concurrent
(B) The sides of an equilateral triangle
(C) The sides of a right angled triangle
(D) None of these
23. $\mathrm{A}(\mathrm{a}, \mathrm{b}), \mathrm{B}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{C}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are the vertices of a triangle. If $\mathrm{a}, \mathrm{x}_{1}, \mathrm{x}_{2}$ are in G.P. with common ratio r and $\mathrm{b}, \mathrm{y}_{1}$, y_{2} are in G.P. with common ratio s, then area of $\Delta A B C$ is :
(A) ab $(r-1)(s-1)(s-r)$
(B) $\frac{1}{2} a b(r+1)(s+1)(s-r)$
(C) $\frac{1}{2}(r-1)(s-1)(s-r)$
(D) $a b(r+1)(s+1)(s-r)$
24. If a, b, c are in G.P., then the line $a^{2} x+b^{2} y+a c=0$, will always pass through the fixed point.
(A) $(0,1)$
(B) $(1,0)$
(C) $(0,-1)$
(D) $(1,-1)$
25. The lies $\ell \mathrm{x}+\mathrm{my}+\mathrm{n}=0, \mathrm{mx}+\mathrm{ny}+\ell=0$ are concurrent if :
(A) $\ell+\mathrm{mn}=0$
(B) $\ell+\mathrm{m}-\mathrm{n}=0$
(C) $\ell-m+n=0$
(D) $\ell^{2}+\mathrm{m}^{2}+\mathrm{n}^{2} \neq \ell \mathrm{m}+\mathrm{mn}+\mathrm{n} \ell$
26. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units where $x>0, y>0$. The triangle
(A) Right angled
(B) Acute angled
(C) Obtuse angled
(D) Isosceles
27. The lines $\mathrm{x}+2 \mathrm{y}-3=0,2 \mathrm{x}+\mathrm{y}-3=0$ and the line ℓ are concurrent. If the line ℓ passes through the origin, then its equation is :
(A) $x-y=0$
(B) $x+y=0$
(C) $x+2 y=0$
(D) $2 x+y=0$
28. Angles of the triangle formed by the lines $x^{2}-y^{2}=0, x=7$ are :
(A) $45^{0}, 90^{0}, 45^{0}$
(B) $30^{\circ}, 60^{\circ}, 90^{\circ}$
(C) $60^{\circ}, 60^{\circ}, 60^{\circ}$
(D) None of these
29. If the orthocenter and centroid of a triangle are $(-3,5)$ and $(3,3)$ then it's circumcentre is :
(A) $(6,2)$
(B) $(3,-1)$
(C) $(-3,5)$
(D) $(-3,1)$
30. A triangle with vertices $(4,0),(-1,-1),(3,5)$ is :
[AIEEE-2002]
(A) Isosceles and right angled
(B) Isosceles but not right angled
(C) right angled but not isosceles
(D) Neither right angled nor isosceles
31. The centroid of a triangle is $(2,3)$ and two of it's vertices are $(5,6)$ and $(-3,4)$. The third vertex of the triangle is :
[AIEEE-2002]
(A) $(2,1)$
(B) $(2,-1)$
(C) $(1,2)$
(D) $(1,-2)$
32. If a vertex of a triangle is $(1,1)$ and the mid-points of two sides through this vertex are $(-1,2)$ and $(3,2)$, then the centroid of the triangle is :
[AIEEE-2005]
(A) $\left(-1 \frac{7}{3}\right)$
(B) $\left(\frac{-1}{3}, \frac{7}{3}\right)$
(C) $\left(1, \frac{7}{3}\right)$
(D) $\left(\frac{1}{3}, \frac{7}{3}\right)$
33. If non zero numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P. then the straight the $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. That point is :
[AIEEE-2005]
(A) $(1,-2)$
(B) $(1,-1 / 2)$
(C) $(-1,2)$
(D) $(-1,-2)$
34. The line parallel to x-axis passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$ where $(a, b) \neq(0,0)$ is :
[AIEEE-2005]
(A) Above x-axis at a distance $3 / 2$ from it
(B) Above x-axis at a distance $2 / 3$ from it
(C) Below x-axis at a distance $3 / 2$ from it
(D) Below x-axis at a distance $2 / 3$ from it
35. Let $A(h, k), B(1,1)$ and $C(2,1)$ be the vertex of a right angled triangle with $A C$ it's hypotenuse. If the area of the triangle is 1 , then the set of value which ' k ' can take is given by :
[AIEEE-2007]
(A) $\{1,3\}$
(B) $\{0,2\}$
(C) $\{-1,3\}$
(D) $\{-3,-2\}$
36. The orthocenter of the right triangle with vertices $\left[2, \frac{(\sqrt{3}-1)}{2}\right],\left(\frac{1}{2},-\frac{1}{2}\right)$ and $\left(2,-\frac{1}{2}\right)$ is :
[II T-1993]
(A) $\left[\frac{3}{2}, \frac{\sqrt{3}-3}{6}\right]$
(B) $\left[2,-\frac{1}{2}\right]$
(C) $\left[\frac{5}{4},-\frac{\sqrt{3}-2}{4}\right]$
(D) $\left[\frac{1}{2}, \frac{1}{2}\right]$
37. The orthocenter of the triangle formed by the lines $x y=0$ and $x+y=1$ is :
[II T-1995]
(A) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(B) $\left(\frac{1}{3}, \frac{1}{3}\right)$
(C) $(0,0)$
(D) $\left(\frac{1}{4}, \frac{1}{4}\right)$
38. If the vertices P, Q, R of a triangle $P Q R$ are rational points, which of the following points of the triangle $P Q R$ is (are) not always rational points(s) ?
[II T-1998]
(A) Centroid
(B) Incentre
(C) Circumcentre
(D) None of these
39. If $\mathrm{P}(1,2), \mathrm{Q}(4,6), \mathrm{R}(5,7)$ and $\mathrm{S}(\mathrm{a}, \mathrm{b})$ are the vertex of a parallelogram PQRS, then :
[II T-1998]
(A) $\mathrm{a}=2, \mathrm{~b}=4$
(B) $\mathrm{a}=3, \mathrm{~b}=4$
(C) $\mathrm{a}=2, \mathrm{~b}=3$
(D) $\mathrm{a}=3, \mathrm{~b}=5$
40. The incentre of the triangle with vertex $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is :
[II T-2000, AIEEE-2002]
(A) $\left(1, \frac{\sqrt{3}}{2}\right)$
(B) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
(C) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
(D) $\left(1, \frac{1}{\sqrt{3}}\right)$
41. Let $\mathrm{O}(0,0), \mathrm{P}(3,4), \mathrm{Q}(6,0)$ be the vertices of the triangle OPQ . The point R inside the triangle OPQ is such that the triangles OPR, $\mathrm{PQR}, \mathrm{OQR}$ are of equal area. The co-ordinates of R are :
[II T-2007]
(A) $\left(\frac{4}{3}, 3\right)$
(B) $\left(3, \frac{2}{3}\right)$
(C) $\left(3, \frac{4}{3}\right)$
(D) $\left(\frac{4}{3}, \frac{2}{3}\right)$

OBJECTIVE						ANSWER KEY									
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	A	C	B	A	D	C	A	C	C	C	B	A	B	B	A
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	C	C	D	D	C	A	A	C	C	A	C	A	A	A	A
Que.	31	32	33	34	35	36	37	38	39	40	41				
Ans.	B	C	A	C	C	B	C	B	C	D	C				

